

High dielectric constant elastomers for electromechanical applications

Prof. Frank A. Nüesch

Functional Polymer Laboratory Empa, Dübendorf, Switzerland

and

Institut des Matériaux EPFL, Lausanne Switzerland

Empa part of the ETH Domain

Strategies to increase the dielectric constant of elastomers while maintaining useful elastic properties and ensuring low electrical conductivity

A. Conductive nanoparticle compositesB. Silicones with dipole functionalities

Working principle

Polymer film

- Thin (10 100 μm)
- Elastic (small E-module)
- Incompressible
- Insulating
- High dielectric constant
- Breakdown resistant

Electrodes

- Very thin (<1 μ m)
- Flexible
- Conductive

Current/Voltage source

- High voltage
- Small charging currents

Applications for dielectric elastomer actuators

Actuators

Sensors

Companies active in DEA include: Optotune, Artificial Muscle, Environmental Robots, Creganna-Micromuscle, Bayer materials science, CT Systems; Materials development: Bayer, Wacker

Compliant Transducer Systems

courtesy Dr. G. Kovacs

G. Kovacs, L. Düring, S. Michel, G. Terrasi, Sens. Actuators A, **2009**, *155*, 299

L = 21 mm $\emptyset = 20 \text{ mm}$ V = 4.2 kV $80 \text{ }\mu\text{m}$

Numerical simulation of the effective permittivity of polymer-metal composites

Validation of method

1

Metallic layers (zebra)

Metallic layers as fillers

P. Dahinden et al. internship, 2007

^{1200%} - - theory 1000% simulation 800% effective permittivity 600% 400% 200% 0% 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 volume fraction

Simple cubic lattice

Metallic spheres in a simple-cubic lattice

$$\frac{\varepsilon_{eff}}{\varepsilon_0} = -\frac{\pi}{2} \cdot \ln\left(\frac{\pi}{6} - f\right)$$

Mc Kenzie and Mc Phedran, 1977

Electric potential

Cylinders: effect of aspect ratio

- Effect predicted and already applied to produce materials with ultra-high permittivity (e.g. MWNT)
- Simulation: increase the aspect ratio while keeping the volume fraction constant (@1.9%)

P. Dahinden, Master thesis, EPFL, 2009

Synthesis of silicone elastomers

0.1 < Y < 1.5 MPa

D. Opris, M. Molberg, C. Walder, Y. S. Ko, B. Fischer, F. A. Nüesch, *Adv. Funct. Mat.* 2011, *21*, 3531-3539. Review: P. Brochu, Q. Pei, *Macromol. Rapid Commun.* 2010, *31*, 10-36; C. Racles et al., Smart Mater. Struct. *22* (2013) 104004.

Crosslink density by swelling/extraction tests

$$\eta_{\text{swell}} = \frac{-\ln(1 - V_{\text{r}}) - V_{\text{r}} - \chi V_{\text{r}}^2}{2V_{\text{s}}(V_{\text{r}}^{1/3} - 2V_{\text{r}}/f)}$$

 η_{swell} : crosslinking density V_r : volume fraction of silicone rubber V_s : molar volume of the solvent

 χ : Flory solvent-polymer interaction parameter

f: functionality of crosslink

Sample	W _{ext} [%]	η [mole cm ⁻³]	M _c
A1	8.64	3.12×10^{-5}	16019
A2	5.59	$5.55 imes10^{-5}$	9007
A3	8.25	5.84×10^{-5}	8557
B1	9.93	$6.9 imes 10^{-5}$	7248
B2	9.09	$6.62 imes 10^{-5}$	7550
B3	4.23	$9.55 imes 10^{-5}$	5235
C1	38.86	$3.47 imes10^{-5}$	14425
C2	45.99	2.24×10^{-5}	22328
C3	48.67	$1.88 imes 10^{-5}$	26665

molecular weitght of PDMS: 140000g/mol

D. Opris, M. Molberg, C. Walder, Y. S. Ko, B. Fischer, F. A. Nüesch, Adv. Funct. Mat. 2011

Approaches to increase the permittivity

Dipoles

AgNP (40 nm) in Epoxy

Lai et al., Adv. Mater., (2005), 17, 1777-1781

Materials Valley Workshop Heraeus Hanau, 4.2.2016

Carboxylated Cu-Phthalocyanine particles in 40% weight

Q. M. Zhang et al., NATURE, 419 19 2002, p. 284

Synthesis carboxylated Cu-phthalocyanines

Real and imaginary permittivity at different degrees of relative humidity

D. Opris et al., Chem. Mater. 2008, 20, 6889–6896

Silicones blended with metallic fillers

Conductive fillers: AgNPs

Studying ε as function of: particles size and shape filler volume fraction shell thickness

D. R. McKenzie, R. C. McPhedran, *Nature*, **1977**, *265*, 128. M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, Y. Xia, *Chem. Rev.*, **2011**, *111*, 3669–3712.

Synthesis of silver nanoparticles

Collaboration with Prof. H. Hofmann, EPFL

Particles: J. Zeng, X. Xia, M. Rycenga, P. Henneghan, Q. Li, Y. Xia, *Angew. Chem. Int. Ed.* **2011**, *50*, 244–249. Coating: W. Ströber, A. Fink, E. Bohn, *J. Colloid Interface Sci.* **1968**, *26*, 62.

Segmental flow tubular reactor synthesis

Collaboration: Dr. A. Testion, PSI, Prof. H. Hofmann, EPFL

EMP/

Materials Science & Technology

J. E. Q. Quinsaat, A. Testion, S. Pin, T. Hutwelker, F. A. Nüesch, P. Bowen, H. Hofmann, C. Ludwig, D. M. Opris, *J. Phys. Chem.* **2014**, 118, 11093–11103.

Materials Valley Workshop Heraeus Hanau, 4.2.2016

SiO₂@AgNPs

Materials Valley Workshop Heraeus Hanau, 4.2.2016

Coming close to percolation

Sample	vol%	ρ	ε'	tan δ	E _b	Eb
	Ag	[g/cm ³]			[V/mm] ^b	[V/mm] ^c
B ₃₁	31	4.76	21	0.0300	-	1.3
${}^{\rm stiff}B_{20}$	20	3.05	6.8	0.0142	19.0	5.8
B ₂₀	20	3.05	5.9	0.0078	13.4	5.9
B ₁₄	14	2.46	5.7	0.0144	21.4	12.3
B ₉	9	1.83	4.7	0.0083	23.1	29.4

J. E. Q. Quinsaat et al., J.Mater.Chem.A ,2015, 3, 14675–14685

Silicones blended with organic conductive fillers

Conductive fillers: polyaniline

Studying ε as function of: particle size and shape filler volume fraction shell thickness

D. R. McKenzie, R. C. McPhedran, *Nature*, **1977**, *265*, 128. M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, Y. Xia, *Chem. Rev.*, **2011**, *111*, 3669–3712.

Miniemulsion polymerization

Monomer: divinyl benzene

M. Molberg, D. Crespy, P. Raupper, F. Nüesch, J.-A. Manson, C. Löwe, D. M. Opris, *Adv. Funct. Mater.* **2010**, *20*, 3280–3291. Materials Valley Workshop Heraeus Hanau, 4.2.2016

PDVB@PANI in PDMS

M. Molberg, D. Crespy, P. Raupper, F. Nüesch, J.-A. Manson, C. Löwe, D. M. Opris, *Adv. Funct. Mater.* **2010**, *20*, 3280–3291 Materials Valley Workshop Heraeus Hanau, 4.2.2016

PDVB@PANI in PDMS

D. M. Opris, M. Molberg, C. Walder, Y. S. Ko, B. Fischer, F. A. Nüesch, *Adv. Funct. Mater.* **2011**, *21*, 3531-3539; M. Molberg, D. Crespy, P. Rupper, F. Nüesch, J.-A. E. Månson, C. Löwe, D. M. Opris, *Adv. Funct. Mater.* **2010**, *20*, 3280-3291.

PDVB@PANI in PDMS

D. M. Opris, M. Molberg, C. Walder, Y. S. Ko, B. Fischer, F. A. Nüesch, *Adv. Funct. Mater.* **2011**, *21*, 3531. Materials Valley Workshop Heraeus Hanau, 4.2.2016

Simon Dünki, Empa D.M. Opris, Empa

Thermal and mechanical properties of polar silicones

Racles, D. M. Opris, RSC Adv., 2015, 5, 50054

Cross-linking via side-groups

S. J. Dünki, Y. S. Ko, F. A. Nüesch, D. M. Opris, Adv. Funct. Mater. 2015, 25, 2467–2475

Electromechanical performance

S. Dünki, Y. S. Ko, F. A. Nüesch, D. M. Opris, Adv. Funct. Mater, 25 (16), 2467-2475, 2015.

Self-repairing properties

H. Stoyanov, P. Brochu, X. Niu, C. Lai, S. Yun, Q. Pei, *RSC Adv.* **2013**, *3*, 2272-2278; W. Yuan, H. Li, P. Brochu, X. Niu, Q. Pei, *Intern. J. Smart Nano Mater.* **2010**, *1*, 40-52; W. Yuan, L. Hu, Z. Yu, T. Lam, J. Biggs, S. M. Ha, D. Xi, B. Chen, M. K. Senesky, G. Grüner, Q. Pei, *Adv. Mater.* **2008**, *20*, 621-625; S. Hunt, T. G. McKay, I. A. Anderson, *Appl. Phys. Lett.* **2014**, *104*, 113701.

Conclusions

- Electric permittivity can be increased by filler particles at the expense of decreased breakdown field
- Elasticity and softness can be maintained even at high loadings (30%)
- Strain at break is increased by the fillers
- Dipole functionalization allows to achieve polymers with $\varepsilon > 18$
- Glass transition temperture still below 50°C
- Actuation threshold for polar silicone elastomers well below 10 V/μm

Thanks to

EMPA

Dr. D. Opris J. Quinsaat Dr. M. Molberg Dr. G. Kovacs Dr. M. Alexandru B. Fischer C. Walder S. Michel S. Grimm Y. S. Ko S. Dünki Dr. D. Rentsch Dr. P. Rupper L. Düring

EPFL, Lausanne Prof. H. Hofmann Dr. P. Bowen

Petru Poni, Iasi Dr. C. Racles

PSI, *Villigen* Dr. A. Testino

MPI-P, Mainz Dr. D. Crespi

Univ. Leipzig Prof. F. Kremer Dr. M. Tress

SNF and EMPA for financial support

Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung